Sobolev Inequalities and Ellipticity of Planar Linear Hamiltonian Systems

نویسندگان

  • Meirong Zhang
  • Rafael Ortega
  • M. Zhang
چکیده

In this paper we will establish two different classes of ellipticity criteria, called the L criteria and the L-L criteria respectively, for planar linear Hamiltonian systems with periodic coefficients. The criteria are explicitly expressed using the L and L norms of coefficients and some known Sobolev constants. These results can be considered as the extensions of the famous Lyapunov stability criterion for Hill’s equations. 2000 Mathematics Subject Classification. Primary: 34L40; Secondary: 34L15, 34D20, 93D05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on Spectral Gap and Logarithmic Sobolev Inequalities for Conservative Spin Systems

We observe that a class of conditional probability measures for unbounded spin systems with convex interactions satisses Poincar e and logarithmic Sobolev inequalities. For the corresponding conservative dynamics in a box of linear size L we show that the inverse of the spectral gap and the logarithmic Sobolev constant scale as L 2 in any dimension. 2000 MSC: 60K35

متن کامل

Bounding Relative Entropy by the Relative Entropy of Local Specifications in Product Spaces

The above inequality implies a logarithmic Sobolev inequality for q. We get an explicit lower bound for the logarithmic Sobolev constant of q under the assumptions that: (i) the local specifications of q satisfy logarithmic Sobolev inequalities with constants ρi, and (ii) they also satisfy some condition expressing that the mixed partial derivatives of the Hamiltonian of q are not too large rel...

متن کامل

Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential

We consider a non-interacting unbounded spin system with conservation of the mean spin. We derive a uniform logarithmic Sobolev inequality (LSI) provided the single-site potential is a bounded perturbation of a strictly convex function. The scaling of the LSI constant is optimal in the system size. The argument adapts the two-scale approach of Grunewald, Otto, West-dickenberg, and Villani from ...

متن کامل

Maximizers for the Strichartz Inequalities and the Sobolev-strichartz Inequalities for the Schrödinger Equation

In this paper, we first show that there exists a maximizer for the non-endpoint Strichartz inequalities for the Schrödinger equation in all dimensions based on the recent linear profile decomposition results. We then present a new proof of the linear profile decomposition for the Schröindger equation with initial data in the homogeneous Sobolev space; as a consequence, there exists a maximizer ...

متن کامل

Symplectic and symmetric methods for the numerical solution of some mathematical models of celestial objects

In the last years, the theory of numerical methods for system of non-stiff and stiff ordinary differential equations has reached a certain maturity. So, there are many excellent codes which are based on Runge–Kutta methods, linear multistep methods, Obreshkov methods, hybrid methods or general linear methods. Although these methods have good accuracy and desirable stability properties such as A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008